新闻动态
技术中心
技术中心
当前位置:科达自控 >> 服务支持 >> 技术中心 >> 浏览文章
高速BGA 封装与PCB 差分互连结构的设计与优化
作者:佚名 日期:2020年03月18日 来源:梁晨光 浏览:

内容导读:随着电子系统通信速率的不断提升,BGA封装与PCB互连区域的信号完整性问题越来越突出。

随着电子系统通信速率的不断提升,BGA封装与PCB互连区域的信号完整性问题越来越突出。针对高速BGA封装与PCB差分互连结构进行设计与优化,着重分析封装与PCB互连区域差分布线方式,信号布局方式,信号孔/地孔比,布线层与过孔残桩这四个方面对高速差分信号传输性能和串扰的具体影响。利用全波电磁场仿真软件CST建立3D仿真模型,最后时频域仿真验证了所述的优化方法能够有效改善高速差分信号传输性能,减小信号间串扰,实现更好的信号隔离。

近年来,球栅阵列(BGA)封装因体积小,引脚多,信号完整性和散热性能佳等优点而成为高速IC广泛采用的封装类型。为了适应高速信号传输,芯片多采用差分信号传输方式。随着芯片I/O 引脚数量越来越多,BGA焊点间距越来越小,由焊点、过孔以及印制线构成的差分互连结构所产生的寄生效应将导致衰减、串扰等一系列信号完整性问题,这对高速互连设计提出了严峻挑战。目前国内外学者对于板级信号完整性问题的研究仍多集中于水平传输线或者单个过孔的建模与仿真,频率大多在20 GHz以内。对于包括过孔、传输线的差分互连结构的传输性能以及耦合问题研究较少。并没有多少技术去减少封装与PCB互连区域垂直过孔间的串扰,实现更好的信号隔离

球栅阵列(BGA)封装因体积小,引脚多,信号完整性和散热性能佳等优点而成为高速IC广泛采用的封装类型。为了适应高速信号传输,芯片多采用差分信号传输方式。随着芯片I/O 引脚数量越来越多,BGA焊点间距越来越小,由焊点、过孔以及印制线构成的差分互连结构所产生的寄生效应将导致衰减、串扰等一系列信号完整性问题,这对高速互连设计提出了严峻挑战。目前国内外学者对于板级信号完整性问题的研究仍多集中于水平传输线或者单个过孔的建模与仿真,频率大多在20 GHz以内。对于包括过孔、传输线的差分互连结构的传输性能以及耦合问题研究较少。并没有多少技术去减少封装与PCB互连区域垂直过孔间的串扰。

有研发团队通过通过仿真并对结果进行比较与分析,得到如下设计和优化建议,对于高速PCB设计具有一定的指导意义:

1)差分信号从过孔引出时,为满足等长等距的要求,应尽量采用水平对称的布线方式,以达到最佳的传输性能和最小的共模噪声。如果布线时无法做到绝对的水平对称,45°转角布线要优于90°转角布线。

2)BGA封装信号引脚布局采用正交方式,可充分降低差分对之间串扰的影响。与水平布局相比,正交布局在5~30 GHz频带内串扰有5~15 dB的改善。

3)在重要信号孔周围增加地孔隔离,可以在一定程度上改善串扰,但是很快就会饱和,由仿真结果可知:20 GHz以内给每一对信号孔周围布置4个地孔,就可以很好的降低差分信号间的串扰,满足信号完整性要求。20 GHz以上时,可在某些高速信号周围布置6个隔离地孔,以改善信号之间的串扰。

4)在选择布线层时,为避免过孔长Stub对信号的干扰,差分线应尽量靠近PCB板底层布线,走内部带状线。如果很多对差分对并行传输,几对差分信号可分别布置在不同信号层以降低串扰,但要注意布在浅层的差分信号过孔一定要背钻。

上一篇文章:本质安全型系统和设备 下一篇文章:没有了
相关链接
发表评论
用户评论
版权所有 山西科达自控股份有限公司 晋ICP备09004627号    晋公网安备 14019202000008号     
官方微信
新浪官方微博
腾讯官方微博